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metallic

strip above a dielectric-clad ground plane is investigated both theo-
retically and experimentally. An expression for the Green’s function
which can be evaluated numerically is developed for the usual case

for which the energy of the incident surface wave is “lightly trapped”

by the dielectric. Using this expression, a variational formula for the
reflection coefficient of the strip is developed, and the Rayleigh-Ritz

technique is applied to yield approximate values for the reflection
coefficient and surface currents of the strip.

Numerical results are presented and compared with experimental

values measured on a polystyrene-coated aluminum table. Strips

measuring up to one wavelength in width positioned up to one wave-
length above the dielectric are considered, and arzreement between

the&y and experiment is found to be good.”

A thorough description of the experimental
niques is presented.

INTRODUCTION

n

URI NG the past fifteen years

considerable amount of work

apparatus and tech-

there has been a

reported in the,. ,.
~ literature concerned with various aspects of

electromagnetic surface waves. Much of this work has

now been compiled in texts, notably those by Barlow

and Brown [1], Collin [2], and Jasik [3]. Although

surface wave phenomena have been investigated ex-

tensively, little has been done toward solving, theoret-

ically, the scattering problem associated with obstacles

near such a transmission system. King and Schlesinger

[4] have made measurements of the reflection coef-

ficients of obstacles near a dielectric image line, as have

DuHamel and Duncan [5]. The latter group derived an

integral expression for the reflection coefficient, but it

was only incidental to their experimental procedure.

Sharma [6] has considered the case of a thin conducting

strip normal to a surface wave system; however, he re-

stricted his analysis to the case in which the lower edge

of the strip was attached to the surface. Also, he ob-

tained only the magnitude of the transmission coef-

ficient and made no estimate of its phase angle.

A theoretical study of the scattering of obstacles near

a surface waveguide is important from several points

of view. The microwave engineer has the problem of im-

pedance matching with minimum loss due to radiation.
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The use of obstacles is, of course, a standard technique

in closed waveguides [7]. It would be highly desirable

to extend this technique to open guides as well. How-

ever, the antenna engineer is interested not only in the

matching problem, but at the same time in controlling

the radiation in such a way as to produce a desired

radiation pattern. The judicious use of obstacles pro-

vides a means of accomplishing this control. DuHamel

and Duncan [8] have been successful in developing

such a technique through the use of experimental

methods. For these reasons it was decided to investigate

the scattering of a plane surface wave by a thin metallic

strip.

DISCUSSION OF THE PROBLEM

The problem to be considered is that of determining

the reflection coefficient of a perfectly conducting, in-

definitely thin strip located an artibrary distance above

a dielectric-coated ground plane which supports a plane

TM surface wave. The thickness of the dielectric is

adjusted to permit only the lowest-order TM surface

wave mode to propagate. The geometry of the prob-

lem in shown in Fig. 1.

The field components of the incident surface wave can

be written [3] in complex form as

EU~ = A e–cW-i@OZ (1)

(2)

(3)

The attenuation constant QO and propagation constant

PO are related as follows:

/302 = kd + Cw? (4)

where k~ is the free-space wave number.

Referring to Fig. 1, the incident field induces an elec-

tric current on the surface of the strip, which is only y

directed, This current sheet, with a density ~(y) au per

unit length in the x direction, radiates a scattered

field ES, ?P.

The total scattered electric field at some arbitrary

point above the guiding surface consists of three parts:

a direct radiation field from the scatterer, a reflected

radiation field from the surface, and a scattered surface

wave. The ratio of the transverse electric field of the

backscattered surface wave to the transverse electric

field of the incident wave will be defined as the reflec-
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Fig. 1. Guiding surface and strip scatterer.

tion coefficient of the strip. The transverse component

of electric field of the reflected surface wave (EUS),W

can be related to the incident field by-

in which r is the reflection coefficient.

The total magnetic vector potential for the induced

current distribution has only a y component, which is

given by

Av(y, z) =
s

G(y, y’; ~)J(y’)dy’ (6)
strip

where G(y, y’; z) is the Green’s function for the problem.

The scattered transverse electric field is then given by

‘8=;(’2+3’1 (7)

The Green’s function can be constructed directly by

following the procedure outlined by Collin [2], with the

result

G(y, y’; Z)

= – j : [Ho(’) (koti(y – y’)’+ Z’) + g(y + y’, z)] (8)

in which

R
g(y + y’, .2) = + s—~-,illu+dl–wd~. (9)

Jlrcl

In (9) 1 is taken to be that branch of ~~’+ko’ for which

Im 1<0 and R is the reflection coefficients for the plane

waves which make up (9), that is,

lK + b tan bt
R=

lK – b tan bt
(10)

where b = V’Y2+ Kko2. The contour C and the branch cuts

of -y are shown in Fig. 2.

An expression for the reflection coefficient in terms of

the induced current distribution can be obtained di-

rectly from (6). Unfortunately, this current distribution

is not known; therefore, a variational method will be

used to obtain a stationary expression for I’ in terms of

the unknown current distribution. The procedure is

similar to that used to determine equivalent circuit

A
SURFACE
WAVE POLE

-- —- —4. -—-—--
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A

Fig. 2. Proper branch cuts and the contours c,f integration.

parameters for diaphragms in waveguides [2], [7],

but the problem is more complicated for an open sur-

face wave system than for a closed waveguide structure

because there exists in the former-–in adciition to a

number of discrete modes-a continuous spectrum of

scattered radiation.

The first term in (8) leads to the direct radiation from

a line dipole source (9), and the seconcl integral de-

scribes that radiation field which is reflected from the

ground plane and modified by the presence of the dielec-

tric coating. For z <0, the contour C can be warped into

the contour Cl in the left-half plane, as shown in Fi~g. 2.

By doing this it is seen that g(y+y’, z) consists of the

sum of a reflected surface wave due to the pole at

7 = –~~o and a radiation field obtained frcjm the in-
tegration around the branch cut.

The transverse electric field due to the reflected sur-

face wave term is then

[
(~.s).i. = = R= [R]T=-jpos J(y’)e–ao”’dy’

st~jp 1
. e–cY0tl+Jf30z (11)

For convenience the amplitude of the incident wave is

adjusted to unity, and the reflection coefficient defined

by (5) can be written as

Roflo

[ IS
r= —— e–~o~’~(y’)dy’

2&leo strip

where RO is obtained from the evaluation of

of R, and is given by

(,12)

the residue

– 2a”
RO = —– . (13)

CI!I)[Kao+ t(K2 — l)c’02 + t(K — I)koz]
1+ - ——

K[(K — I)kaz — aoz]

This result could have been obtained by using the

reciprocity theorem [1], [8], and [10 ].

If the current distribution I(y) were known, the re-

flection coefficient could be computed from (12). At-

tempts have been made to approximate th~e current by

assuming it to be of the same form as the short-circuit

distribution [1], [10 ]. The results were in error b!jr a

factor of about 2 for strips with a width of one wave-
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length. Also, no information on the phase of the reflec-

tion coefficient was obtained.

MATHEMATICAL FORMULATION

To determine the scattering properties of the strip

under consideration, it is only necessary to know the

tangential component of the electric field in the plane

of the strip. Therefore, z is set equal to zero in (9), and

only the expression

need be investigated. In the Appendix this integral is

put into the following form:

g(y, O) = – RoLe-””” + G,(y)

where

J
v

G,(y) = I?. e-ao(ti-v’)~o(z)(~oy~)dy~

o

()K—l
+— Ho(’)(koy)

K+l

and L is the Laplace transform of the Hankel function,

with the transform variable set equal to — a.:

pm I
L= J e–.O?/)~o(~) (~oyf)~yl

o So-—so

——
[

~ l+j~ln
T r“:a”)l ‘1’)

This formulation is subject to the condition that

~K–lkot<<:, (16)

This condition is satisfied in those cases for which the

energy of the surface wave is ‘(lightly trapped, ” that is,

contained mostly in the air immediately above the di-

electric rather than in the dielectric itself. This is true

for most practical surface wave systems where it is

desirable to minimize losses.

The representation (14) is now well-suited to numeri-

cal calculation. The integration in this expression ex-

tends over a finite interval which is smaIl for low strips,

and the sum converges fairly rapidly because of the

factor (1– K/1+ Ion. The sum in (14) is due to the

“leaky-wave” poles of R(s) and can be interpreted

physically as an infinite number of image sources placed

at multiples of 2t below the usual image point. Specif-

ically, the reflected radiation at y due to a point source

at y’ is g(y+y’, O). Thus, when y is replaced by Y+Y’ in

(14), the Hankel function in the sum has as its argu-

ment ko{ (y+t)+(y’+ t+2t[m —1]) }. The first image

source is then at y = — (y’+ t) and succeeding sources

are at y = — {y’ +t + 2t(m — 1) } , with decreasing ampli-

tudes given by

I–Km

()m“

Note that as K approaches unity and the dielectric dis-

appears, all terms in (14) vanish, except for the m = 1

term which becomes

130@)(ko[y + y’ + 2t]),

and this term is seen to be just the usual image source

for reflection by a perfectly conducting ground plane.

A variational expression from which the reflection

coefficient r can be calculated will now be developed.

From (8) and (14), the Green’s function for the prob-

lem can be written as

G(y, y’; o)=–j:[G1( lY+Y’1)+G2(l Y– y’])

– ROLe-~O(ff+#’)] (17)

where

Gz(y) = HI)(2) (k0y)

with Gl(y) and L given by (14) and (15), respectively.

At the strip, the scattered field must cancel the y conl-

ponent of incident electric field, and thus (6), (7), and

(17) yield

Eu’(y, O) = – e–”~~ = – floRoLe-”O~ s e–KW’J(yf)~y/

strip

‘&(koz+$)Jtri.

“ [Gl(l Y + Y’ I ) + Gz( I Y - y’ I )]~(y’)dy’. (18)

Notice that the second derivative acting on the function

Gl( I y + y’ I ) produces a singularity that requires inter-

pretation of the integral in (18) in a principal value

sense and renders the integration impractical from the

standpoint of numerical calculation. This difficulty can

be overcome by recognizing that

;G,(ly+y’1)=–+ GI(IY+Y’1)

;G,([y–y’ [)==

~’

—G,(]y–y’ 1). (19)
dyay’

Equation (18) is next multiplied through by Y(y) and

integrated over the strip. Making use of (19), the terms

involving G1 and G2 can be integrated by parts twice,

once with respect to y and once with respect to y’. Since
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the edge condition requires that .J~y) vanish at both

edges of the strip, the process yields

[s ]J
2

~,’R,L J(y’)e–”o”’dy’ + J(y’)e–~O~’dy’
strip strip

1
— Ss[I(Y, Y’)G( / Y + Y’ I)

-lWql strip

+ ~(y, y’)G,( I y -- y’ I )]dydy’ (20)

where

(u(y) (U(y’)
I(y, y’) = Y(y) J(y’) – /%0’~,; —

dy’

LU(,y) (iv(y’)
T(y, y’) = J(y).T(y’) + W --; —

dy’ “
Dividing (20) through by

R0,60–[s 1
2

](y’)e-aov’~y’

2weo strip

and recalling the definition of 17 given by (12) yields the

following

in which .

expression:

SS
[~(y, y’)GI( / y

(L~o/2)r + 1 strip
— —

r
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method. Approximate values for 17 were then computed,

as well as values for the am. The rapid convergence of

these values with increasing N, along with the resulting

close agreement between the computed values of ?J and

the experimental ones, indicated that this procedure was

satisfactory.

The integrals in (21) were evaluated by breaking up

each strip into from 100 to 200 equal intervals and sum-

ming the values of the integrand at the center of each

interval. For those intervals in which G2( I y – y’ I ) had
a logarithmic singularity, the integration over the in-

terval was performed analytically by using the small

argument approximation for the Hankel function and

assuming that l(y, y’) would remain constant over the

interval. Increasing the number of intervals changed

the final result by only a fraction of a per cent, indicat-

ing that the integration scheme was sufficiently ac-

curate.

Since the Green’s function for the reflected radia t ion

field given by (14) appears as an integrand in (21), this

field was computed with greater care in c,rder to mini-

mize any compounding of error. The sum in (14) was

+ y’ [ ) + ~(y,Y’)G2(I y – y’ I )]~y~y’

2@oRo
[f

J(y’)e–”o”’dy’
strip 1

L is given by (15) and RO by (13). It can be

directly verified that (21) is sationary with respect to a

first-order variation in J(y) and is dependent only on

its functional form. (See, for example, Collin [2], pp.

331-332.)

NUMERICAL CALCULATIONS .4ND DISCUSSION

OF RESULTS

It was decided that instead of merely evaluating (26)

with a single judicious approximation for the unknown

current, the current would be expanded in a set of

functions and the Rayleigh-Ritz procedure employed.

The additional integrations involvecl in this latter

technique pose no real increase in complexity, and at

the same time the process has the advantage of giving

a description of the unknown current J“(y).

The following truncated Fourier sine series with com-

plex coefficients was used to approximate the current

N

J(y) = Z am sin
[ 1;(Y–h) k<y<k+w. (22)

m=1

This expression was then substituted into the stationary

functional (21), and derivatives were taken with re-

spect to the am according to the usual Rayleigh-Ritz

carried out to ten terms,

formed using Simpson’s

unit of argument.

(21)

and the integration was per-

rule with 100 intervals per

All calculations were performed by an IBM 7094 at

the computing facility of the University of California

at Los Angeles. The results of the computations for I’

are presented in Table I.

Typical computed values of the magnitude and phase

angle of the reflection coefficient for various heights

above the surface are displayed graphically in Figs.

3 and 4, respectively. Measured values are also

shown. The correspondence between the theoretical

and the experimental data is quite good. .No te that as

the width of the strip is increased, the magnitude of the

reflection coefficient increases to a maximum at a

width slightly greater than a half wavelength. The

magnitude then begins to decrease for widths approach-

ing one wavelength. The decrease is more pronounced

for the lower heights where the image fields are the

strongest. This effect shows up in both the theoretical

and the experimental data and is thought to be the

start of an oscillatory behavior which is typical of

diffraction phenomena.

The phase angle of the reflection coefficient appears, to

be almost independent of the height of the strip. For
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TABLE I

COmUTED REFLECTION COEFFICIENTS

Strip Widths (kow)
——————— ————

0.50 1.00 1.25 1.80 2.20

0.028/–91° 0. 11/–99” 0.17/–103” 0.32/–114° 0.45/–124°

0.020/–91° O.08/– 96° 0.12/–99° 0.25/–110° 0.37/–122°

0.013/–92° 0.05/–96° 0.08/–100° 0.18/–113° 0,25/–127°

0.008/–91° 0.03/–96° o .05/– 100” 0.10/–112” 0.15/–124°—-

0.005/–91” 0.02/–96° 0.03/–100” 0.07/–112° 0.10/–125° —

Strip Widths (kow)

2.50 2.80 3.20 3.76 4.92

0.55/–130” 0.63/–138°——

0 .45/– 133° 0.51/–144”

0.29/–137° O.32/– 146°

0.18/–134° O.20/– 142”——

0.12/–135° 0.13/–145”

0.72/–147° 0.77/–159” 0.72/–170°

0.54/–156” 0.52/–166” 0.49/–172°——

0.33/–155” 0.34/–163” 0.33/–170”—— ——

0.22/–153° 0.22/–163° 0.21/–171°—— ——

0.14/–155” 0.14/–165° 0.13/–171”

narrow strips (less than a quarter wavelength) the im-

pedance of the strip is almost completely reactive. This

implies that the loss due to radiation is small. As the

strip width approaches zero, the phase angle asymp-

totically approaches — 90° and the strip becomes equiv-

alent to a shunt capacitance. As the strip width in-

creases, the phase angle asymptotically approaches

– 180° and the strip becomes resistive. If the reflection

coefficient of a particular strip is plotted as a function of

height above the surface, the effect of the exponential

decay of the incident surface wave field is clearly evi-

dent (Fig. 5).

All of the computed results that have been presented

were obtained using four terms in the current series.

When only two terms were used, it was found that for

the narrower strips the correspondence between the

theoretical and the experimental results was not as

good as desired. It was determined that for the narrow

strips the third harmonic of the current representation

had a significant value and could not be neglected. The

fifth- and higher-order harmonics were found to be

negligible.

The higher-order complex coefficients of the current

spectrum are shown in Fig. 6 for a fixed value of strip

height (k~h = 1. 5). These amplitudes are normalized to

the complex value of al. Note that of the higher har-

monics for the widest strip, the second harmonic is

dominant. As the strip is made narrower, the second

harmonic decreases and the third harmonic increases

until it eventually predominates. Also, it is significant

that for the wider strips the complex coefficients are

out of phase with one another; but for the narrow

strips, all components are in phase. This behavior is

readily explained in physical terms. When the strip is

narrow and the fields are essentially uniform over it,

the current should also be fairly uniform in both mag-

nitude and phase. This would also indicate a large third-

harmonic content since this harmonic is symmetric over

the strip. For wide strips, the current should exhibit

some asymmetry as the incident field decays nonuni-

formly from bottom to top of the strip, thus requiring

a large second harmonic. Also, phase variations are to

be expected for wide strips since radiation is high and

the current should have some of the character of the

scattered radiation field.

The components of the computed current can be

summed so that the approximate current distribution

along the strip can be determined. This has been done

for three different strip widths and the results are shown

in Fig. 7 (a). Note that for the widest strip the exponen-

tial decay of the incident field has a pronounced effect

upon the current distribution. Of interest also is the

variation of phase over the strip. Only the phase angle

for the widest strip is shown in Fig. 7(b) since the phase

was almost constant over the width of the narrower

strips, whereas it varied approximately 60° over the

widest strip. This could easily account for the fact that

when the short-circuit current—which predicts no phase

variation—is used in the equation for the reflection co-

efficient, the results are in substantial error [1]. The

current distributions determined from this analysis can

be used to compute the radiated field; hence, the total

scattered field can be determined. This work is under

way at the present time and will be reported later.
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EXPERIMENTAL STUDY

At the outset of the study it was recognized that it

was impossible to duplicate experimentally the two-

dimensional problem that was posed, It was possible,

however, to achieve a high degree of approximation by

use of a surface wave system of sufficient width. After

reviewing the reported work of other researchers, par-

ticularly that of Cullen [11] and Rich [12], it was de-

cided that a table with a width of ten wavelengths or

more is sufficient. The width chosen was 18.25 wave-

lengths, which proved more than adequate.

The length of the table was chosen so that the surface

wave field would not be contaminated, at the scatterer

under test, by direct radiation from the launcher. Taking

advantage of the experience of Rich [12], whose ap-

paratus was similar to ours, we chose a table length of

7 feet. The table itself was constructed by bonding

together two sheets of aluminum. The thicknesses of

the two sheets were 9/64 inch and 3/4 inch, respec-

tively. These dimensions were selected in order than a

standard tunable probe might be used in the slotted

section. Also, by using thick aluminum, the mounting

of auxiliary mechanisms—such as the sliding termina-

tion—was greatly simplified.

The surface wave launcher used was a standard

double-cheese design. A sketch of the experimental

apparatus is shown in Fig. 8.

When the thickness of the plastic and its dielectric

constant are known, the decay factor cxo can be com-

puted for the surface wave field using the approximate

formula [2]

()

K—l
Cl!o= W — t.

K

For this study the frequency was chosen to be 937.5

Mc. The thickness of the plastic was 1/16 inch, and its

dielectric constant was 2.54. Substituting these quan-

tities in the foregoing equation revealed that

CYO = 0.94/inch.

Using this value for ao, a computation was made of the

relative field as a function of height above the reactive

surface. a. was also determined experimentally using a

tapered probe. The experimental value was in close

agreement with the computed value.

Since the TM mode excites only a longitudinal cur-

rent in the metallic surface, it was possible to construct

a slotted section in the table with a minimal perturba-

tion of the field. The required short circuit was accom-

plished by fastening an alclad aluminum plate to

aluminum angle so that the assembly was self-support-

ing and the plate stood vertical. A 6-inch height was

adequate for the short circuit.

In order to eliminate the need for a perfect termina-

tion for the surface wave system, the sliding termina-

TDOUBLE CHEESE
..% LAUNCHER

l—

1) I ~METALLIc SHEETS

I I l“ ‘- DIREcTlONAL
COUPLERr

x–(3
ISOLATOR KLYSTRON

POWER

OSCILLATOR SUPPLY

Fig. 8. Block diagram of experimental apparatus.

tion method of impedance measurement [13], [14]

was adopted. The slotted section was Iocated approxi-

mately 22 wavelengths from the aperture of the surface

wave launcher. The strip under test was located ap-

proximately 20 wavelengths from the slotted section.

For the measurements reported here, the termination

was Iocated approximately 12 wavelengths from the

strip and the required movement was only 0.6 inch.

The increments were taken to be about 0.1 inch which

represents six measurements for each strip position.

The carriage for the slotted section probe was simply

an aluminum block machined to accommodate the body

of the probe assembly. A rectangular-shaped hole was

milled into the bottom sheet so that the carriage block

could be inserted into it with a sliding fit. A slot 0.124

inch wide was milled into the top sheet so that its center

line coincided with the line formed by the motion of the

probe. This width was chosen to accommodate the

outer conductor of the probe, as in standard waveguide

slotted sections. The corresponding slot in the plastic

was made 0.080 inch wide. The length of the slot was

2.65 inches which allowed a probe movement of slightly

more than two wavelengths, The carriage was moved by

use of a rack gear and its mating gear. The position of

the carriage was determined by a dial indicator which

could be read to 0.001 inch.

The sliding termination consisted of a slab of ab-

sorbing material bonded to an aluminum plate. The

material was 5 inches high and extended across the full

width of the table. Care was taken to insure that this

assembly was at all times perpendicular to the table

and to the direction of propagation of the surface wave.

An assembly was designed which allowed the termina-

tion to be adjusted by a single precision worm gear

located under the table. The position of the termina-

tion was obtained from a dial indicator. The termina-

tion had a mismatch of 1.3 to 1, and a measurement of

its impedance as a function of its position revealed that

the residual impedance of the table was negligible.

The strips used for these measurements were stan-

dard blued-steel clock springs which are available in

various widths. The thickness of these strips was 0.10
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Fig. 9. Photograph of experimental apparatus.

Strip
Height (Lok)

o

0.50

1.00

1.50

2.00

2.50

3.01

3.76

5.02

7.53

Strip
Height (kolz)

o

0.50

1.00

1.50

2.00

2.50

3.01

3.76

5.02

7.53

——

1,25

inch. The strips were gold-plated to insure high conc[uc-

tivity. While being measured, each of the strips was

held under tension between two plastic vertical posts,

The strips were pivoted at each end to prevent twisting

as tension was applied. The strips were continuously

adjustable in vertical position to about 5 inches above

the plastic surface. Again care was exercised to insure

that the strip was perpendicular to the surface and to

the direction of propagation of the surface wave.

A block diagram of the instrumentation is also shc)wn

in Fig. 8, and the completed apparatus is shown in

Fig. 9. The completed assembly was considered to be

highly satisfactory. Measured values of reflection co-

efficient for various strip widths and heights are pre-

sented in Table II.

TABLE 11

MEASURED REFLECTION COEFFICIENTS
.—— .—

Strip Widths (how)
—

1.85 2.20 2.52
—. ———

0.28/–113°

0.21/–96°——

0.16/–107°

0. 12/–94°——

0. 10/ –93°

O.06/–92°

0.05/-92°

o. 03/-–93”

0.02/-–73”

0.48/–137°

0.38/–116°——

0.35/–114”

0.31/–112°

0.25/–112”

0.21/–115°

0,17/–115”

0.12/–115°

0.08/–113°

0.03/–118°

0. 55/– 145°

0.50/–129°

0.46/–123°——

0.40/–126°

0 .32/– 133°

0.26/–129°.—

0.20/–126°.——

0.15/–124°

0.09/–123°

0,03/–101”

0.61/–149”

0. 58/– 140°

0. 46/– 139°

0.37/–145”——

0. 29/– 143°

0. 23/– 141°

0.17/–136°

0.11/–139”

0,04/–127°——

Strip Widths (kow)

2.84 3.14 3.76 5.02
____ —_____ ———___.. ——. ——— ——— ——— .—

0. 68/-- 159°

0. 68/-- 145°——

0. 62/-- 146°

0.51/--152”——

0. 39/-- 153°——

0. 30/-- 153°.—

0.25/–151°——

0. 18/-- 148°.—

0.11/--152°

0. 04/-- 154°——

0. 73~– 159°

0.71/–156°

0.63/–158°

0.50/–160°

0.39/–160°

0.31/–160°

0,25/–158°——

0.19/–159”——

0.11/–160°

0.04/–161°

0.81/–167° 0.82/–179°——

0.75/–167° 0.69/– l~~0

0.61/–169° 0.57/–176°

0.50/–168° 0.46/–176°——

0.40/–166° 0.38/–173°—— ——

0.32/–166° 0.31/–171”

0.27/–166° 0.27/–171°——

0.20/–166° 0.20/–172”—— ——

0.11/–167° 0.11/–171”

0.04/–170” 0.04/–161°—— ——
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s PLANECONCLUSION

The reflection coefficient of a perfectly conducting

strip above a dielectric-clad ground plane supporting a

plane surface wave can be computed with a high degree

of accuracy using the results of the analysis reported

here. Of course, the surface wave system must be such

that the condition expressed by (16) holds. This con-

dition is met in most practical surface wave systems.

Hence these results are quite general.

From the analysis the current distribution has been

determined to a close approximation. Therefore, the

radiation field can easily be calculated.

APPENDIX

EVALUATION OF THE REFLECTED FIELD INTEGRAL

The purpose is to find a more suitable representation

for the integral

J
g(Y, 0) = 1 ~ e–iZUdT. (23)

jrcl

The integrand of (23) is greatly complicated because of

the fact that R contains ~ explicitly and as such is an

irrational function of the complex variable of integra-

tion ~, This condition can be resolved by making the

transformation of variables

S = jV’y2 + ko2. (24)

Under this transformation, s = –jl and the radiation

condition, Im 1<0, defines which branch of the square

root in (24) constitutes a valid transformation. That is,

the contour C in the ~ plane must map into a contour

C~, which lies in the left-half s plane. With (24) the

integral (23) becomes

R(s)
g(y, o) = ~

s–
e,~ds

i~ c, “i(~)
(25)

where the transformed variable and the plane-wave re-

flection coefficient are

‘y(s) = jv’sz + ,kOz (26)

R(s) =
KS – ~Kko2 + Y2(s) tan (v’Kko2+T2(s) ~)

. (27)
KS + ~Kko2 + ~z(s) tan (tiKkoz + ?’z(~) ~)

The transformed contour C2 is illustrated in Fig, 10.

Note that the surface wave poles of R map into a single

simple pole of l?(s) at s = — ao, and also that both seg-

ments of C (Fig. 2), A –0 and O–A’, map into the

same contour C’z. Since the value of ~ on A — O is the

negative of its value on 0 — A‘, the function ~(s) ap-

pearing in (25) is discontinuous in the s plane, under-

going a change in sign as s goes around the branch

point (s= –jko) on C2. That portion of Cz which en-

compasses this branch point has been determined in

the usual manner [2] by introducing losses in k. and

then taking the limit as these losses vanish.

Note that R(s) is now a rational function of s, having

one surface wave pole at so= — a. with residue R. as

s: jko

s.:-ao

SURFACE
WAVEPOLE

S=-jko
~! 0

A

Fig. 10. Transformed contour Cz in the s plane.

given by (13), and an infinite number of ‘ileaky-wave”

poles [15 ] at s = S. in the right-half s plane with resi-

dues R.. Equally well, R(s) may be expressed in terms

of a partial fraction expansion

&
R(s) = R(m) + ~ — .

~=o s — Sn
(28)

That portion of C2 labeled O – A‘ is now warped up-

ward and A — O is warped downward, the result shown

as contour CB in Fig. 11. This distortion is performed

with ~(s) varying continuously over one branch of the

square root in (26). After Cs has thus been established,

the branch cuts shown in Fig. 11 are introduced, thereby

making ~(s) single-valued. When warping O — A‘ up

over the surface wave pole at s = — aO, a residue term

must be subtracted from the integral and the residue

evaluated with 7( — ao) = +.jBO. Since ~(s) is assumed to

vary continuously as O — A‘ is moved up and away from

Cl. (Recall that O – A‘ was that portion of C for which

Im ~>0.) Thus (25) becomes

2Ro
g(Y, 0) = – — e-~ov

80

The second term in (29) can now be recognized as a

Fourier-transform inversion integral and may be

evaluated by means of the convolution theorem. The

inverse transform of 2/ ~sz + koz with the branch cuts

shown in Fig. 11 is simply the Hankel function

‘-’[+2 :ko2]=H0(2)(k0’ y’) ’30)

and from (28) the inverse transform of R(s) is given by

F-’[R(s)] = R(@)8(y) + ~(y)

where

Roe–w y>o
r(y) =

– ~ &&w y<o.
.=l
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~!

s pLANE

+Jko

/

///// /(~{&2!i!_
\O

SURFACE
WAVE POLE /

/
/

-jko

c,
A

Fig. 11. Final contour Ci shown with the branch cuts of -y(s),

Invoking the convolution theorem yields

= R(m) Ho@(koy) + J‘mr(y– y’)~oo)(ko ] y’ I )dy’

—m

= R(m )Ho(’)(koy)

+ &e-.ou

s
‘meaoy’Ho(qko]y’ I hiy’

—.

+ ~ R. ~ ‘e’’t~-”’)~of’)(k”y’)dy’
7Z=0 v

where it has been assumed that

sv eaOv’~o(’)(&y9dy’ = s‘mg–sov’Ho(2)(~oy~)~y/—m —m

(31)

.\ctually, the last two integrals as stated both diverge,

but the assumption is valid if these integrals are inter-

preted as analytic continuations as so approaches – cio

from the imaginary axis. In this light, (30) can be used

to evaluate the first integral in (31) and the result sub-

stituted into (29) to yield

g(Y, 0) = ~(~ )Ho(’)(koy)

-~Rnsm es. (v–v’)~o(z) (koy’)dy’. (32)
?l=o u

It will be useful to know the asymptotic behavior of

g(y, 0) for large y. This behavior is easily deduced from
(32). Using the asymptotic representations for the

Hankel and error functions for large arguments [16], it

can be shown directly that for large y

s II.(2) (koy)e–’”~“e–.r$u~~o(m(~oyf)dy’ + —— —.

!/ jko + S.

When this result is substituted into (32), it is found that

= 12(-jko)Ho(21(koy). (33)

In physical terms, (33) indicates that when one gets far

enough away from the dielectric in the z = O plane, the

indirect radiation from a current element approaches

the radiation due to a simple image source rnodifiecl by

a factor

This factor is just the reflection coefficient for a p] ane

wave incident normal to the dielectric.

If (32) is to be reduced further, the values of the

residues R. and the poles .sn must be determined, as

shown in the following section.

EVALUATION OF THE POLES AND RESIDUES OF R(s)

The transformed reflection coefficient R(s) given by

(27) is of the form

–P(–s)
R(s) =

P(s)
1(34)

where

P(s) = KS + <(K – l)ko2 – S3

. tan (<(K – l)ko2 – s2~) (35)

and the poles of R(s) are, of course, determined by the

zeros of P(s). It is convenient to make the substitu l-ion

.2= Qt~(K – l)k02 – S2

or

S2 = - ~ 1 -‘K - 1)ko24’2’
4t2 [ 1

(36)
#

and seek the values of z = x+jy for which (35) vanishes.

Substituting for s in (35) reveals that P(s) has a zero

when

[

(K – l)ko2P4
K 2 ‘—— -1–1 = tan’ (2/’2). (37)

z~

Only one root exists when z is purely real; this root

corresponds to the surface wave pole at sO= — ao. ‘Irhe
value of ao can be obtained graphically [17]. When aO

is known, the residue RO can then be calculated from

(13). The “leaky-wave” zeros of l’(s) correspond to

values of z that are more generally complex and these

roots will now be determined. E“rorn the form of (37) it

is clear that if z, is a root, z~ and — z~ are also roots, and

therefore only the first quadrant of the z plane needl be

investigated. By comparing the arguments of the ri:ght

and left sides of (37) it can easil~ be shown that no

“leaky-wave” roots exist in the first quad, rant of the z

plane unless Re z> r.
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For any practical surface wave transmission system

it is usually desirable to have most of the energy stored

in the air immediately above the dielectric rather than

in the dielectric itself in order that losses be kept to a

minimum. The quantity Ktcio gives a rough estimate of

the ratio of electric energy stored in the dielectric to the

energy in the air, per unit length of line. From the

graphical solution of the transcendental equation (35)

for ao, it is obvious that KtaO can be made small by

choosing

<(K – 1) kot <<:.

lTnder such conditions and with the knowledge that

I zl >r for a root, it is clear that

(K – 1)kI)24t2 < (K – l)k,’4t2 << ~
(38)

z’ – T’

and thus this term can be neglected in (37). As an ex-

ample, for the surface wave system employed in this

~,ork, kO=5.02/inches, K =2.54, t= 1/16 inch, and thus

(K – l)ko24t2 ~ 006
. .

2

Making use of (38) in (37) and (36) gives

tan (Z/2) A f ~K

s = i j(z/2t). (39)

Eliminating z from these equations and solving for s

gives the following expression for the “leaky-wave”

roots:

‘n=wi+)+’n”l
n= + 1, *3, -15,.... (40)

Notice that the approximation associated with (38) im-

proves with an increasing absolute value of n.

The residues of R(s) are now easily found. At s = s,,

the numerator of (34) becomes

‘P(– Sn) = 2KSn.

Note from (36) that

dz (2t)’s

FS =-z”

The derivative of P(s) at s. can thus be calculated as

follows:

dP(s)

/

d

--(

z z—
ds

s+~tan —
S=sfi ds )2 ,=,n

.– – t 3 [2 tan (z/2) + z + z tan’ (z/2) ]8=,s..
z

Using the approximate expressions (39), the residues are

evaluated as

–P(–s.) 2K
R. =

P’(s.) = t(K2 – 1)
(41)

and these values are seen to be independent of the

index n.

Substituting for the R., the sum over the “leaky-

~,ave” poles in (32) can be written

2K

[1
~—1(&v’)/2t @

~ @(2n+l)7r(s/-u’) /2t.

t(K2–1) K+l %=—w

Recognizing the Fourier expansion of a periodic set of

delta functions yields

From (27) it is seen that R(L= ) = (K+l)/(K– 1). using

this result and (42) in (32) yields the desired representa-

tion for g(y, O), given by (36).
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