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Abstract—The scattering of a TM surface wave by a metallic
strip above a dielectric-clad ground plane is investigated both theo-
retically and experimentally. An expression for the Green’s function
which can be evaluated numerically is developed for the usual case
for which the energy of the incident surface wave is “lightly trapped”
by the dielectric. Using this expression, a variational formula for the
reflection coefficient of the strip is developed, and the Rayleigh-Ritz
technique is applied to yield approximate values for the reflection
coefficient and surface currents of the strip.

Numerical results are presented and compared with experimental
values measured on a polystyrene-coated aluminum table. Strips
measuring up to one wavelength in width positioned up to one wave-
length above the dielectric are considered, and agreement between
theory and experiment is found to be good.

A thorough description of the experimental apparatus and tech-
niques is presented.

InTRODUCTION
I ) URING the past fifteen years there has been a

considerable amount of work reported in the
literature concerned with various aspects of
electromagnetic surface waves. Much of this work has
now been compiled in texts, notably those by Barlow
and Brown [1], Collin [2], and Jasik [3]. Although
surface wave phenomena have been investigated ex-
tensively, little has been done toward solving, theoret-
ically, the scattering problem associated with obstacles
near such a transmission system. King and Schlesinger
[4] have made measurements of the reflection coef-
ficients of obstacles near a dielectric image line, as have
DuHamel and Duncan [5]. The latter group derived an
integral expression for the reflection coefficient, but it
was only incidental to their experimental procedure.
Sharma |6] has considered the case of a thin conducting
strip normal to a surface wave system; however, he re-
stricted his analysis to the case in which the lower edge
of the strip was attached to the surface. Also, he ob-
tained only the magnitude of the transmission coef-
ficient and made no estimate of its phase angle.

A theoretical study of the scattering of obstacles near
a surface waveguide is important from several points
of view. The microwave engineer has the problem of im-
pedance matching with minimum loss due to radiation.
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The use of obstacles is, of course, a standard technique
in closed waveguides [7]. It would be highly desirable
to extend this technique to open guides as well. How-
ever, the antenna engineer is interested not only in the
matching problem, but at the same time in controlling
the radiation in such a way as to produce a desired
radiation pattern. The judicious use of obstacles pro-
vides a means of accomplishing this control. DuHamel
and Duncan [8] have been successful in developing
such a technique through the use of experimental
methods. For these reasons it was decided to investigate
the scattering of a plane surface wave by a thin metallic
strip.

DiscussioN oF THE PROBLEM

The problem to be considered is that of determining
the reflection coefficient of a perfectly conducting, in-
definitely thin strip located an artibrary distance above
a dielectric-coated ground plane which supports a plane
TM surface wave. The thickness of the dielectric is
adjusted to permit only the lowest-order TM surface
wave mode to propagate. The geometry of the prob-
lem in shown in Fig. 1.

The field components of the incident surface wave can
be written [3] in complex form as

E,t = Adeaoy—ibo (1)
 apd
E)i = ]— e—a0y—1Boz (2)
Bo
BoA ,
H, = e o0y—iboz, (3)
W€

The attenuation constant «, and propagation constant
B are related as follows:

502 = k02 ‘|— 0102

where ko is the free-space wave number.

Referring to Fig. 1, the incident field induces an elec-
tric current on the surface of the strip, which is only y
directed. This current sheet, with a density J(y)a, per
unit length in the x direction, radiates a scattered
field Es, H®.

The total scattered electric field at some arbitrary
point above the guiding surface consists of three parts:
a direct radiation field from the scatterer, a reflected
radiation field from the surface, and a scattered surface
wave, The ratio of the transverse electric field of the
backscattered surface wave to the transverse electric
field of the incident wave will be defined as the reflec-
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Fig. 1. Guiding surface and strip scatterer.

tion coefficient of the strip. The transverse component
of electric field of the reflected surface wave (E,%)s
can be related to the incident field by

(Eys)sw = I'E) (3)

in which I is the reflection coefficient.

The total magnetic vector potential for the induced
current distribution has only a ¥ component, which is
given by

Ay(y, 2) = G,y 2)J(y)dy' (6)

strip

where G(y, ¥'; z) is the Green's function for the problem.
The scattered transverse electric field is then given by

1 9?

Ep=—(k+ _—> 4A,. )
Jwe dy?

The Green’s function can be constructed directly by

following the procedure outlined by Collin [2], with the

result

Gy, v'; %)

= —ff‘f [H® (ko/ & = )T F ) + g0+, 9)] (8

in which

1 R
g+, 2 = — | —elvtimegy, )

JmeY ¢ !
In (9) lis taken to be that branch of v/y2-+k¢* for which

Im /<0 and R is the reflection coefficients for the plane
waves which make up (9), that is,

Ik + b tan bt

10
Ik — b tan & (10)

where b = v/vy*+kko®. The contour C and the branch cuts
of v are shown in Fig. 2.

An expression for the reflection coefficient in terms of
the induced current distribution can be obtained di-
rectly from (6). Unfortunately, this current distribution
is not known; therefore, a variational method will be
used to obtain a stationary expression for I' in terms of
the unknown current distribution. The procedure is
similar to that used to determine equivalent circuit
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Fig. 2. Proper branch cuts and the contours of integration.

parameters for diaphragms in waveguides [2], [7],
but the problem is more complicated for an open sur-
face wave system than for a closed waveguide structure
because there exists in the former—in addition to a
number of discrete modes—a continuous spectrum of
scattered radiation.

The first term in (8) leads to the direct radiation from
a line dipole source (9), and the second integral de-
scribes that radiation field which is reflected from the
ground plane and modified by the presence of the dielec-
tric coating. For z<0, the contour C can be warped into
the contour C; in the left-half plane, as shown in Fig. 2.
By doing this it is seen that g(y-3’, 2) consists of the
sum of a reflected surface wave due to the pole at
v=—jBe and a radiation field obtained from the in-
tegration around the branch cut.

The transverse electric field due to the reflected sur-
face wave term is then
(Eyew = a

[Res [R],—ss, J(y’)e~aoy'dy']

2wegnin strip

- g aoytiboz,

(11)

For convenience the amplitude of the incident wave is
adjusted to unity, and the reflection coefficient defined
by (5) can be written as

R.8
20.)60 strip

where R, is obtained from the evaluation of the residue
of R, and is given by

(12)

"‘20[0
Ro = aolrag + 12 — Dag® + t(k — 1)—]6;7? '
14

K[(K — 1)k — aoz]

(13)

This result could have been obtained by using the
reciprocity theorem [1], [8], and [10].

If the current distribution J(y) were known, the re-
flection coefficient could be computed from (12). At-
tempts have been made to approximate the current by
assuming it to be of the same form as the short-circuit
distribution [1], [10]. The results were in error by a
factor of about 2 for strips with a width of one wave-
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length. Also, no information on the phase of the reflec-
tion coefficient was obtained.

MATHEMATICAL FORMULATION

To determine the scattering properties of the strip
under consideration, it is only necessary to know the
tangential component of the electric field in the plane
of the strip. Therefore, z is set equal to zero in (9), and
only the expression

1 ¢ R
10,0 =~ [ ey
jrJc i

need be investigated. In the Appendix this integral is
put into the following form:

g(}’, 0) = - RoLe—aﬂy + Gl(y)
where

¥
Gl(y) = Rof e_aO(y_yl)Ho(”(/eoy')dy’

0

+<K— 1>H(2)(k )
4+ 1 ’ o

4k hsd 1 — k7™
e — 1) 2[1 + :| Ho® (koy + 2mkot)  (14)
K® — m=1 K

and L is the Laplace transform of the Hankel function,
with the transform variable set equal to —aj:

L= f e‘s"y’Ho(g)(koy’)dy/
0

Sp>—ag

1 2 Bo 1+ o
= |1+;2m (M>] (15)
60 |: ™ ko
This formulation is subject to the condition that
—_— ™
Vi Tkt < (16)

This condition is satisfied in those cases for which the
energy of the surface wave is “lightly trapped,” that is,
contained mostly in the air immediately above the di-
electric rather than in the dielectric itself. This is true
for most practical surface wave systems where it is
desirable to minimize losses.

The representation (14) is now well-suited to numeri-
cal calculation. The integration in this expression ex-
tends over a finite interval which is small for low strips,
and the sum converges fairly rapidly because of the
factor (1 —«/14x)” The sum in (14) is due to the
“leaky-wave” poles of R(s) and can be interpreted
physically as an infinite number of image sources placed
at multiples of 2 below the usual image point. Specif-
ically, the reflected radiation at v due to a point source
at y' is g(y+9, 0). Thus, when v is replaced by y-+4' in

1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

SEPTEMBER

(14), the Hankel function in the sum has as its argu-
ment ko{ (y+£) + (v’ +t+2t[m—1])}. The first image
source is then at y= —(y'+{) and succeeding sources
are at y= — {y’+t+21(m—1) }, with decreasing ampli-

tudeS gi ven b Y
( )
1 T K )

Note that as k approaches unity and the dielectric dis-
appears, all terms in (14) vanish, except for the m=1
term which becomes

Hy® (koly + 5" + 21]),

and this term is seen to be just the usual image source
for reflection by a perfectly conducting ground plane.

A variational expression from which the reflection
coefficient T’ can be calculated will now be developed.
From (8) and (14), the Green’s function for the prob-
lem can be written as

G(y, 9'; 0) = —jf'f[01<ly+y’|>+az<ly—y’l)

— R0L3~ao(1/+y’)] (1n

where
G2(y) = Ho(koy)

with G1(y) and L given by (14) and (15), respectively.
At the strip, the scattered field must cancel the y com-
ponent of incident electric field, and thus (6), (7), and
(17) yield

Ef(y,0) = — v = — BoRoLe—aoyf e~V J(y")dy'

strip
1 02
— kOZ + ) f
4weg 63’2 strip

Gy +y D)+ G|y — vy DTGy, (18)

Notice that the second derivative acting on the function
Gl({ y—{—y’t) produces a singularity that requires inter-
pretation of the integral in (18) in a principal value
sense and renders the integration impractical from the
standpoint of numerical calculation. This difficulty can
be overcome by recognizing that

2oyt =~ Gyt ]
oy LIy H Y )‘"ayay' (ly+y])
ay202<[y—y’!)= P G([y—5'[). (19)

Equation (18) is next multiplied through by J(y) and
integrated over the strip. Making use of (19), the terms
involving G1 and G can be integrated by parts twice,
once with respect to y and once with respect to y’. Since
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the edge condition requires that J(v) vanish at both
edges of the strip, the process yields

2
BOZROL [ f ](yl)e—aoyldy/} + f(y')e‘“oy'dy’
strip strip

: [1(y, y)Gi(|y + ¥ ])
dweg ffsmp

+ 10, ¥)Go(| v — ¥ | )]dydy’  (20)

where

di(y) dJ(y
Iy, ") = IWIB) — ko® () )

dv dy'
7 dJ(yy dJ(y
Tl y/) = TOIG) + ke 0L HOD
dy dy'

Dividing (20) through by
R 2
26060 strip

and recalling the definition of T" given by (12) vields the
following expression:

(L80/2)T + 1 fft 16,6y + 5 ) + 109Gy — o [)]dyay’
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method. Approximate values for I' were then computed,
as well as values for the a,. The rapid convergence of
these values with increasing NV, along with the resulting
close agreement between the computed values of T' and
the experimental ones, indicated that this procedure was
satisfactory.

The integrals in (21) were evaluated by breaking up
each strip into from 100 to 200 equal intervals and sum-
ming the values of the integrand at the center of each
interval. For those intervals in which Gg(f y~y’f) had
a logarithmic singularity, the integration over the in-
terval was performed analytically by using the small
argument approximation for the Hankel function and
assuming that /(y, »') would remain constant over the
interval. Increasing the number of intervals changed
the final result by only a fraction of a per cent, indicat-
ing that the integration scheme was sufficiently ac-
curate.

Since the Green's function for the reflected radiation
field given by (14) appears as an integrand in (21), this
field was computed with greater care in order to mini-
mize any compounding of error. The sum in (14) was

r

in which L is given by (15) and Ry by (13). It can be
directly verified that (21) is sationary with respect to a
first-order variation in J(y) and is dependent only on
its functional form. (See, for example, Collin {2}, pp.
331-332.)

NuMERICAL CALCULATIONS AND DISCUSSION
OF RESULTS

It was decided that instead of merely evaluating (26)
with a single judicious approximation for the unknown
current, the current would be expanded in a set of
functions and the Rayleigh-Ritz procedure employed.
The additional integrations involved in this latter
technique pose no real increase in complexity, and at
the same time the process has the advantage of giving
a description of the unknown current J(y).

The following truncated Fourier sine series with com-
plex coefficients was used to approximate the current

N mr
J(y) = Zamsin[ﬂ(y—h)} h<y<h+w (22)
m=1 w

This expression was then substituted into the stationary
functional (21), and derivatives were taken with re-
spect to the a, according to the usual Rayleigh-Ritz

230R, [

o

IG)eesay |

strip

carried out to ten terms, and the integration was per-
formed using Simpson’s rule with 100 intervals per
unit of argument.

All calculations were performed by an IBM 7094 at
the computing facility of the University of California
at Los Angeles. The results of the computations for I'
are presented in Table I.

Typical computed values of the magnitude and phase
angle of the reflection coefficient for various heights
above the surface are displayed graphically in Figs.
3 and 4, respectively. Measured values are also
shown. The correspondence between the theoretical
and the experimental data is quite good. Note that as
the width of the strip is increased, the magnitude of the
reflection coefficient increases to a maximum at a
width slightly greater than a half wavelength. The
magnitude then begins to decrease for widths approach-
ing one wavelength. The decrease is more pronounced
for the lower heights where the image fields are the
strongest. This effect shows up in both the theoretical
and the experimental data and is thought to be the
start of an oscillatory behavior which is typical of
diffraction phenomena.

The phase angle of the reflection coefficient appears to
be almost independent of the height of the strip. For
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TABLE 1
ComMpuTED REFLECTION COEFFICIENTS

Strip Widths (kew)

Strip o

Height (ko) 0.50 1.00 1.25 1.80 2.20
0.50 0.028/—-91° 0.11/—99° 0.17/-103° 0.32/—114° 0.45/—124°
1.50 0.020/-91° 0.08/—-96° 0.12/-99° 0.25/-110° 0.37/-~122°
2.51 0.013/—-92° 0.05/—96° 0.08/—100° 0.18/—113° 0.25/—127°
3.77 0.008/—91° 0.03/—96° 0.05/—100° 0.10/—~112° 0.15/—124°
5.02 0.005/—91° 0.02/-—96° 0.03/—100° 0.07/—-112° 0.10/—125°

Strip Widths (kew)

Strip T N

Height (ko) 2.50 2.80 3.20 3.76 4.92
0.50 0.55/—130° 0.63/—138° 0.72/—147° 0.77/~159° 0.72/—-170°
1.50 0.45/—133° 0.51/—144° 0.54/—156° 0.52/~166° 0.49/—172°
2.51 0.29/—137° 0.32/—146° 0.33/—155° 0.34/—~163° 0.33/—170°
3.71 0.18/—-134° 0.20/—142° 0.22/—153° 0.22/—~163° 0.21/—171°
5.02 0.12/—135° 0.13/—-145° 0.14/—155° 0.14/-165° 0.13/—171°

narrow strips (less than a quarter wavelength) the im-
pedance of the strip is almost completely reactive. This
implies that the loss due to radiation is small. As the
strip width approaches zero, the phase angle asymp-
totically approaches —90° and the strip becomes equiv-
alent to a shunt capacitance. As the strip width in-
creases, the phase angle asymptotically approaches
—180° and the strip becomes resistive. If the reflection
coefficient of a particular strip is plotted as a function of
height above the surface, the effect of the exponential
decay of the incident surface wave field is clearly evi-
dent (Fig. 5).

All of the computed results that have been presented
were obtained using four terms in the current series.
When only two terms were used, it was found that for
the narrower strips the correspondence between the
theoretical and the experimental results was not as
good as desired. It was determined that for the narrow
strips the third harmonic of the current representation
had a significant value and could not be neglected. The
fifth- and higher-order harmonics were found to be
negligible.

The higher-order complex coefficients of the current
spectrum are shown in Fig. 6 for a fixed value of strip
height (koh=1.5). These amplitudes are normalized to
the complex value of ai. Note that of the higher har-
monics for the widest strip, the second harmonic is
dominant. As the strip is made narrower, the second
harmonic decreases and the third harmonic increases
until it eventually predominates. Also, it is significant
that for the wider strips the complex coefficients are
out of phase with one another; but for the narrow

strips, all components are in phase. This behavior is
readily explained in physical terms. When the strip is
narrow and the fields are essentially uniform over it,
the current should also be fairly uniform in both mag-
nitude and phase. This would also indicate a large third-
harmonic content since this harmonic is symmetric over
the strip. For wide strips, the current should exhibit
some asymmetry as the incident field decays nonuni-
formly from bottom to top of the strip, thus requiring
a large second harmonic. Also, phase variations are to
be expected for wide strips since radiation is high and
the current should have some of the character of the
scattered radiation field.

The components of the computed current can be
summed so that the approximate current distribution
along the strip can be determined. This has been done
for three different strip widths and the results are shown
in Fig. 7(a). Note that for the widest strip the exponen-
tial decay of the incident field has a pronounced effect
upon the current distribution. Of interest also is the
variation of phase over the strip. Only the phase angle
for the widest strip is shown in Fig. 7(b) since the phase
was almost constant over the width of the narrower
strips, whereas it varied approximately 60° over the
widest strip. This could easily account for the fact that
when the short-circuit current—which predicts no phase
variation—is used in the equation for the reflection co-
efficient, the results are in substantial error [1]. The
current distributions determined from this analysis can
be used to compute the radiated field; hence, the total
scattered field can be determined. This work is under
way at the present time and will be reported later.
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EXPERIMENTAL STUDY

At the outset of the study it was recognized that it
was impossible to duplicate experimentally the two-
dimensional problem that was posed. It was possible,
however, to achieve a high degree of approximation by
use of a surface wave system of sufficient width. After
reviewing the reported work of other researchers, par-
ticularly that of Cullen [11] and Rich [12], it was de-
cided that a table with a width of ten wavelengths or
more is sufficient. The width chosen was 18.25 wave-
lengths, which proved more than adequate.

The length of the table was chosen so that the surface
wave field would not be contaminated, at the scatterer
under test, by directradiation from the launcher. Taking
advantage of the experience of Rich [12], whose ap-
paratus was similar to ours, we chose a table length of
7 feet. The table itself was constructed by bonding
together two sheets of aluminum. The thicknesses of
the two sheets were 9/64 inch and 3/4 inch, respec-
tively. These dimensions were selected in order than a
standard tunable probe might be used in the slotted
section. Also, by using thick aluminum, the mounting
of auxiliary mechanisms—such as the sliding termina-
tion—was greatly simplified.

The surface wave launcher used was a standard
double-cheese design. A sketch of the experimental
apparatus is shown in Fig. 8.

When the thickness of the plastic and its dielectric
constant are known, the decay factor ap can be com-
puted for the surface wave field using the approximate

formula [2]
k— 1
oy — k02 ( >t.
K

For this study the frequency was chosen to be 9375
Mec. The thickness of the plastic was 1/16 inch, and its
dielectric constant was 2.54. Substituting these quan-
tities in the foregoing equation revealed that

gy = 0.94/inch.

Using this value for ay, a computation was made of the
relative field as a function of height above the reactive
surface. ag was also determined experimentally using a
tapered probe. The experimental value was in close
agreement with the computed value.

Since the TM mode excites only a longitudinal cur-
rent in the metallic surface, it was possible to construct
a slotted section in the table with a minimal perturba-
tion of the field. The required short circuit was accom-
plished by fastening an alclad aluminum plate to
aluminum angle so that the assembly was self-support-
ing and the plate stood vertical. A 6-inch height was
adequate for the short circuit.

In order to eliminate the need for a perfect termina-
tion for the surface wave system, the sliding termina-
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tion method of impedance measurement [13], [14]
was adopted. The slotted section was located approxi-
mately 22 wavelengths from the aperture of the surface
wave launcher. The strip under test was located ap-
proximately 20 wavelengths from the slotted section.
For the measurements reported here, the termination
was located approximately 12 wavelengths from the
strip and the required movement was only 0.6 inch.
The increments were taken to be about 0.1 inch which
represents six measurements for each strip position.

The carriage for the slotted section probe was simply
an aluminum block machined to accommodate the body
of the probe assembly. A rectangular-shaped hole was
milled into the bottom sheet so that the carriage block
could be inserted into it with a sliding fit. A slot 0.124
inch wide was milled into the top sheet so that its center
line coincided with the line formed by the motion of the
probe. This width was chosen to accommodate the
outer conductor of the probe, as in standard waveguide
slotted sections. The corresponding slot in the plastic
was made 0.080 inch wide. The length of the slot was
2.65 inches which allowed a probe movement of slightly
more than two wavelengths. The carriage was moved by
use of a rack gear and its mating gear. The position of
the carriage was determined by a dial indicator which
could be read to 0.001 inch.

The sliding termination consisted of a slab of ab-
sorbing material bonded to an aluminum plate. The
material was 5 inches high and extended across the full
width of the table, Care was taken to insure that this
assembly was at all times perpendicular to the table
and to the direction of propagation of the surface wave.
An assembly was designed which allowed the termina-
tion to be adjusted by a single precision worm gear
located under the table. The position of the termina-
tion was obtained {rom a dial indicator. The termina-
tion had a mismatch of 1.3 to 1, and a measurement of
its impedance as a function of its position revealed that
the residual impedance of the table was negligible.

The strips used for these measurements were stan-
dard blued-steel clock springs which are available in
various widths. The thickness of these strips was 0.10
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inch. The strips were gold-plated to insure high conduc-
tivity. While being measured, each of the strips was
held under tension between two plastic vertical posts.
The strips were pivoted at each end to prevent twisting
as tension was applied. The strips were continuously
adjustable in vertical position to about 5 inches above
the plastic surface. Again care was exercised to insure
that the strip was perpendicular to the surface and to
the direction of propagation of the surface wave.

A block diagram of the instrumentation is also shown
in Fig. 8, and the completed apparatus is shown in
Fig. 9. The completed assembly was considered to be
highly satisfactory. Measured values of reflection co-

efficient for various strip widths and heights are pre-
Fig. 9. Photograph of experimental apparatus. sented in Table I1.

TABLE II
MEastRED REFLECTION COEFFICIENTS

Strip Widths (kow)

Strip |
Height (koh) 1.25 1.85 2.20 2.52
0 0.28/—113° 0.48/—137° 0.55/—145° 0.61/—149°
0.50 0.21/-96° 0.38/—116° 0.50/—129° 0.58/—140°
1.00 0.16/—107° 0.35/—114° 0.46/—123° -
.50 — 0.31/—112° 0.40/—126° 0.46/—139°
2.00 0.12/—04° 0.25/—112° 0.32/—13%° 0.37/—145°
2.50 0.10/—-93° 0.21/=115° 0.26/—129° 0,29/ 143
3.01 0.06/—92° 0.17/—115° 0.20/—126 _ 0.23/—141°
3.76 0.05/—92° 0.12/—115° 0.15/—124° 0.17/~136°
5.02 0.03/—93° 0.08/—113° 0.09/—123° 0.11/139°
7.53 0.02/ 7% 0.03/—118° 0.03/—101° 0.04/—127°
‘‘‘‘‘‘‘‘ Strip Widths (kew)
Helgﬁl(/eozz) T m 314 3.6 - se

0 0.68/—150° 0.73/—159° 0.81/—167° 0.82/—179°
0.50 0.68/ 145° 0.71/—156° 0.75/—167° 0.60/—177°
1.00 0.62/— 146> 0.63/—158° 0.61/~169° 0.57/—176°
1.50 0.51/~152° 0.50/—160° 0.50/—168° 0.46/—176°
2.00 0.39/153° 0.39/—160° 0.40/ — 166° 0.38/—173°
2.50 0.30/—158° 0.31/—160° 0.32/—166° 0.31/—171°
3.01 0.25/—151° 0.25/—158° 0.27/~ 166° 0.27/—171°
3.76 0.18/—148° 0.19/—150° 0.20/—166° 0.20/—172°
5.02 0.11/—152° 0.11/—160° 0.11/=167° 0.11/—171°
7.53 0.04/—154° 0.04/—161° 0.04/~170° 0.04/—161°




638

CONCLUSION

The reflection coefficient of a perfectly conducting
strip above a dielectric~-clad ground plane supporting a
plane surface wave can be computed with a high degree
of accuracy using the results of the analysis reported
here. Of course, the surface wave system must be such
that the condition expressed by (16) holds. This con-
dition is met in most practical surface wave systems.
Hence these results are quite general.

From the analysis the current distribution has been
determined to a close approximation. Therefore, the
radiation field can easily be calculated.

APPENDIX
EvALUATION OF THE REFLECTED FIELD INTEGRAL

The purpose is to find a more suitable representation
for the integral

1 0 R
80,0 = — [ = ey 23)

JjTJc !
The integrand of (23) is greatly complicated because of
the fact that R contains vy explicitly and as such is an
irrational function of the complex variable of integra-
tion 4. This condition can be resolved by making the
transformation of variables

s =V + ko
Under this transformation, s= —j/ and the radiation
condition, Im /<0, defines which branch of the square
root in (24) constitutes a valid transformation. That is,
the contour C in the v plane must map into a contour

Cs, which lies in the left-half s plane. With (24) the
integral (23) becomes

B -]; R(s) w
g(ya 0) - ].ﬂ_ LQ ’Y(S) € dS

(24)

(25)

where the transformed variable and the plane-wave re-
flection coefficient are

v(s) = jv/'s* + ko
ks — Viko® + v2(5) tan (Vkke®+7v2(s) 1) ‘
ks + vxko® + v2(s) tan (\/xko® + v2(s) 1)

The transformed contour C, is illustrated in Fig. 10.
Note that the surface wave poles of R map into a single
simple pole of R(S) at s= —ay, and also that both seg-
ments of C (Fig. 2), 4 —0 and O—4’, map into the
same contour C,. Since the value of v on 4 —O is the
negative of its value on O—A4’, the function y(s) ap-
pearing in (25) is discontinuous in the s plane, under-
going a change in sign as s goes around the branch
point (s= —jke) on C, That portion of C; which en-
compasses this branch point has been determined in
the usual manner [2] by introducing losses in ko and
then taking the limit as these losses vanish.

Note that R(s) is now a rational function of s, having
one surface wave pole at sp= —ap with residue R, as

(26)

(27)

R(s) =
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Fig. 10. Transformed contour C; in the s plane.

given by (13), and an infinite number of “leaky-wave”
poles [15] at s=s, in the right-half s plane with resi-
dues R.. Equally well, R(s) may be expressed in terms
of a partial fraction expansion

R,
R(s) = R(=) + 2 : (28)

n=0 § — Sp

That portion of C, labeled O— A4’ is now warped up-
ward and 4 — 0O is warped downward, the result shown
as contour C; in Fig. 11. This distortion is performed
with 4(s) varying continuously over one branch of the
square root in (26). After C; has thus been established,
the branch cuts shown in Fig. 11 are introduced, thereby
making y(s) single-valued. When warping O—A4’ up
over the surface wave pole at s= —ay, a residue term
must be subtracted from the integral and the residue
evaluated with y(—as) = +jBs. Since y(s) is assumed to
vary continuously as O — A4’ is moved up and away from
Cs. (Recall that O — A4’ was that portion of C for which
Im 4>0.) Thus (25) becomes

2R,
80, 0) = — — o
Bo

+if <*~2—A)R Jeurds.  (29)
205 J o, \ot ) B

The second term in (29) can now be recognized as a
Fourier-transform inversion integral and may be
evaluated by means of the convolution theorem. The
inverse transform of 2/+/s5*+ k¢ with the branch cuts
shown in Fig. 11 is simply the Hankel function

= Ho®(ko| y|) (30)

b
Vs? + ko?
and from (28) the inverse transform of R(s) is given by

FUR(s)] = R(«)(y) + r(3)

where
( ) Roe—aov y > 0
r(v) =
O > Ruernv 9 <0,
n=1
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Fig. 11. Final contour C; shown with the branch cuts of v(s).

Invoking the convolution theorem yields

F—l[ 2R(s) :!
\/.5‘2 + k02

+o0
= R()Ho® (key) + f r(y — ¥V Ho® (ko | ' | )dy'
= R()Ho® (key)

+o0
+ Roe—eov f eV Hy® (k| 5" | )dy'

—00

+ ZRnf esn =) [ (kyy')dy'
n=>0

v

(31)
where it has been assumed that

v +e
f eaoy’H()(?)(koy’)dy’ —_ f e—sonyO(z)(kOy/)dy/

—0 —w

+w
mf e Ho® (koy')dy'.

Y

Actually, the last two integrals as stated both diverge,
but the assumption is valid if these integrals are inter-
preted as analytic continuations as so approaches —ag
from the imaginary axis. In this light, (30) can be used
to evaluate the first integral in (31) and the result sub-
stituted into (29) to yield

(9, 0) = R()Ho® (ko)

— ERnf esn =V @ (key)dy'.  (32)
n=0

v

It will be useful to know the asymptotic behavior of
g(y, 0) for large v. This behavior is easily deduced from
(32). Using the asymptotic representations for the
Hankel and error functions for large arguments [16], it
can be shown directly that for large y

x H €3] k e snY
f e_s"y/HO(g)(koyl)dyl N 0 : ( 03’) .
v Jko = sa
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When this result is substituted into (32), it is found that
R, :‘
(—gko) — s

In physical terms, (33) indicates that when one gets far
enough away from the dielectric in the =0 plane, the
indirect radiation from a current element approaches
the radiation due to a simple image source modified by
a factor

503, 0) — Ho® (koy) [R(oo) + 3

n=0

= R(—7ko)Ho® (Eqy). (33)

7k + tan v« kot
Jv/k — tan vk kot

This factor is just the reflection coefficient for a plane
wave incident normal to the dielectric.

If (32) is to be reduced further, the values of the
residues R, and the poles s, must be determined, as
shown in the following section.

R(“ﬂ%) =

EVALUATION OF THE POLES AND RESIDUES OF R(s)

The transformed reflection coefficient R(s) given by
(27) is of the form

R(s) = _:EE:_{Z (34)
(s) = 70) {
where
P(s) = ks + /(k — Dke* — 5*
‘tan (v/(k — 1)ko®> — s%) (35)

and the poles of R(s) are, of course, determined by the
zeros of P(s). It is convenient to make the substitution

g = 20/ (k — 1)k — §?

2 (k — k2"
o= — _ﬁ[l _ T Deds
472 7 ]

and seek the values of z=x-jy for which (35) vanishes.
Substituting for s in (35) reveals that P(s) has a zero
when

or

(36)

o [E”_: Deed 37)

22

} = tan? (z/2).

Only one root exists when z is purely real; this root
corresponds to the surface wave pole at so= —ao. The
value of ay can be obtained graphically [17]. When ay
is known, the residue Ry can then be calculated from
(13). The “leaky-wave” zeros of P(s) correspond to
values of z that are more generally complex and these
roots will now be determined. From the form of (37) it
is clear that if 2, is a root, z; and —z; are also roots, and
therefore only the first quadrant of the z plane need be
investigated. By comparing the arguments of the right
and left sides of (37) it can easily be shown that no
“leaky-wave” roots exist in the first quadrant of the z
plane unless Re 2> .
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For any practical surface wave transmission system
it is usually desirable to have most of the energy stored
in the air immediately above the dielectric rather than
in the dielectric itself in order that losses be kept to a
minimum. The quantity kfa, gives a rough estimate of
the ratio of electric energy stored in the dielectric to the
energy in the air, per unit length of line. From the
graphical solution of the transcendental equation (35)
for ayg, it is obvious that kfws can be made small by
choosing

~__ T
Vik—1) kot<<7'

Under such conditions and with the knowledge that
{zl > for a root, it is clear that

(c = DrMe] (= Dot

2'2 2

<1 (38)

™

and thus this term can be neglected in (37). As an ex-
ample, for the surface wave system employed in this
work, ky=5.02/inches, k=2.54, t=1/16 inch, and thus

— 1) ko442
(o= DRME L o6,
Making use of (38) in (37) and (36) gives

tan (3/2) =
s = 4 4(z/2).

+ jx
(39)

Eliminating 2z from these equations and solving for s
gives the following expression for the “leaky-wave”

roo tS:
[ ( ) . }

n= 41, +3, +5, - - -

Sn =

(40)

Notice that the approximation associated with (38) im-
proves with an increasing absolute value of #.

The residues of R(s) are now easily found. At s=s,
the numerator of (34) becomes

— P(—5n) = 2k8,.
Note from (36) that

dz (28)2s

iz

The derivative of P(s) at s, can thus be calculated as
follows:

dP(s) d < 4 g z)
E— § — tan—
2t 2 /e,

= — ti [2 tan (3/2) + z + z tan? (3/2)]sms,.
z

ds S=S$n ds

Using the approximate expressions (39), the residues are
evaluated as
—P(—s,) 2k

TP k- 1)

(41)
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and these values are seen to be independent of the
index #.

Substituting for the R,, the sum over the “leaky-
wave” poles in (32) can be written

> Ruesn—v)
n=+1,+-
2K K — 1 (y—y') /2t el
= |: J > eoent b=y 2t
k2 — Dle+ 1 S

Recognizing the Fourier expansion of a periodic set of
delta functions yields

Z Rpesnv=¥")

n=t1,---

2k © 1 — g
B e — 1) E_:w [m} 8y — ' + 2mt). (42)

From (27) it is seen that R(e«)=(k+1)/(k—1). Using
this result and (42) in (32) yields the desired representa-
tion for g(y, 0), given by (36).
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